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pneumatic area

hydraulic area

net orifice area

distance from center of gravity of ship to landing platform
coefficient of discharge

direction cosines

direction cosines

direction cosines

force acting at axle of wheel w

force acting at point of wheel contact

force acting normal to shock strut at axle of wheel w

shock-strut force at wheel w

body axes components of axle force at wheel w

body axes components of forces generated at point of wheel contact
internal friction forces at wheel w

gravity vector

hydraulic force parameter

triad of mutually orthogonal unit vectors in directions of platform
axes

triad of mutually orthogonal unit vectors in directions of aircraft
body axes

unit dyadic
tire stiffness at wheel w
direction cosines of shock strut relative to aircraft axes

components of moment vector
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mass of wheel w

unit vector normal to plane of wheel

components of ship's angular velocity vector

components of aircraft's angular velocity vector

unit vector in plene of wheel

pneumetic pressure

air pressure in upper chamber

hydraulic pressure in lower chamber

position vector of wvheel w relative to origin of aircraft axes
position vector of wheel w relative to ship's coordinate system
position vector of aircraft center of gravity relative to ship axes
unit vector in direction of shock strut

shock-strut axial stroke

components of ship's linear velocity vector

components of aircraft linear velocity

velocity of wheel w relative to landing platform

velocity of aircraft's center of gravity

ship axes coordinates

platform axes coordinates

coordinates of wheel w relative to ship's coordinate system

coordinates of aircraft's center of gravity relative to ship's
reference frame

initial coordinates
ccordinates of point of attachment of shock strut
coordinates of wheel w relative to aircraft axes

coordinates of wheel w when shock strut is in fully extended
position
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INFLUENCE OF FRICTION FORCES ON THE MOTION OF VTOL AIRCRAFT
DURING LANDING OPERATIONS ON SHIPS AT SEA
James C. Howard and David 0. Chin

Ames Research Center
SUMMARY

The equations describing the friction forces generated during landing
operations on ships at sea have been formulated. These forces depend on the
platform reaction and the coefficient of friction. The platform reaction
depends on the relative sink rate and the shock-absorbing capability of the
landing gear. The coefficient of friction is assumed to vary with the surface
condition of the landing platform and the angle of yaw of the aircraft relative
to the landing platform. The landings contemplated are by aircraft of the
VIOL type equipped with conventional oleo-pneumatic landing gears. Because
aircraft of this type land with little or no forward speed, spinup forces have
been neglected. Simplifications have been introduced to reduce the complexity
of the mathematical description of the tire and shock-strut characteristics.
It has been shown elsewhere that, for normal impact without tire bottoming,
reasonable variations in the force-deflection characteristics of the tire have
only a relatively small effect on the calculated behavior of the landing gear.
Approximating the actual complicated force-deflection characteristics of the
tire by a linear relationship appears to be adequate for practical purposes.
Although the internal friction forces in the shock strut have been included in
the landing gear model, experimental data suggest that these forces can often
be neglected without impairing the validity of the model equations. By includ-
ing only those characteristics of the tire and shock strut that contribute
significantly to the generation of landing gear forces, a set of relatively
simple equations is obtained. Nevertheless, the equations are considered
adequate for practical purposes.

INTRODUCTION

Landing VIOL aircraft on ships at sea is complicated by the motion and
surface condition of the landing platform, which moves in response to the
motions of the sea, and which is exposed to a variety of atmospheric condi-
tions. An understanding of the landing phenomena requires that a mathematical
model, which includes platform reactions and friction forces, be formulated
and used to simulate the landing maneuver. In assessing the platform reaction
forces likely to be encountered, the actual complicated force-deflection
characteristics of the tire have been approximsted by a linear relationship.
Moreover, in the event that tire bottoming occurs, a linear segment approxima-
tion which takes into account the increased stiffness of the tire that -results
from bottoming yields good results (Milwitsky and Cook, 1953). A limited
amount of experimental data obtained during drop tests at the Langley Research
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Center indicates that the behavior of the landing gear is relatively insensi-
tive to variations in the air compression process, and that variations between
isothermal and near adiabatic compression have only a secondary effect on the
calculated behavior of the landing gear. Consequently, variations in the
polytropic exponent have been neglected. The importance of friction forces
derives from the fact that, if friction is not sufficient to prevent sliding,
the aircraft may be damaged by colliding with adjacent structures. It is
unlikely that VIOL aircraft landings will be attempted when the decks are
awash, but during rough weather the landing platform will be exposed to rain
and possibly sea spray which could reduce the coefficients of friction below
safe levels. Arother possibility to be considered is the likelihood that VIOL
aircraft may produce a shower of spray as the jets interact with the surface
of the sea during the approach. If the resulting spray were to be blown over
the landing platform, the friction forces w.uld be reduced significantly. 1In
view of these considerations, it is important to determine the reactions and .
friction forces likely to be encountered during a variety of sea states and

landing conditions. By including these forces in the equations of the mathe-

matical model, the motion of the aircraft during the landing maneuver can be

computed and the possibility of sliding determined. In formulating the fric-

tion force equations, bending will be neglected and it will be assumed that

each landing gear has a fixed orientation relative to aircraft body axes. In

many cases, the influence of elasticity may be neglected without serious error,

but in some instances, particularly when the landing gear attachment points

experience large displacements relative to the nodal points of the flexible

system, the interaction between the defcrmations of the structure and the

landing gear may be required to represent the system adequately. Expressions

for the hydraulic, air-compression, and internal friction forces generated in

the shock strut are derived in appendix B.

[romemmmssses e B ati sl

KINEMATICS AND DYNAMICS OF AIRCRAFT-SHIP INTERACTIONS

Forces and Moments

Friction forces and platform reactions- Relative to the ship's coordinate
system (X,X,X,), which originates at the center of gravity, the landing plat-
form lies in the plane (X, - C) = 0, where C 1is negative constant. The
X;X; plane of the ship's coordinate system corresponds to the plane to sym-
metry of the veaael and the X, axis is normal to it. A platform coordinate
system (xlx,x,) having axes patallel to the axes of the ship's coordinate
system is used to specify vector components relative to the platform (see -
fig. 1).

Subsequent to the instant at which wheel w makes contact with the land-
ing platform, the aircraft is subjected to a reaction force Fj which is
normal to the landing platform and a friction force which is coplanar with the
platform. Relative to platform axes, the friction force has components F}
and Fj. Hence, subsequent to wheel contact, the force vector P generated
by wheel w has components

= Pl + 73] + F3R (1)
2
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where I, J, and R are a triad of
mutually orthogonal unit vectors in
the directions of the platform axes
and the superscript w denotes the P
wheel being considered. 1

Therefore, if the dynamic
response of the aircraft subsequent
to the wheel contact is being com- X
puted, the wheel reactions and fric-
tion forces of equation (1) must be 4
added to the inertia, thrust, aero-
dynamic, gravitational, and shock-
strut forces to complete the mathe- i
matical description of the force P
system, 3

N

Y

The corresponding wheel forces
relative to aircraft body axes are C
f{ where

g =4, F i,j = 1,2,3 (2) /

and dy4 are direction cosines /

(appendix A). The force generated )

by each wheel is obtained by assign- d;;--
i

y
K

ing the appropriate wheel number.

In this and subsequer* equations,
the summation convention is iusumed; X3
that is, if in any term an iudex
occurs twice, the term is to be
summed with respect to that index for
all admissible values of the index.

Moments produced by friction
forces and platform reactions- The
ith moment component produced by the
platform reaction and the friction
force at wvheel w is the vector

cross-product of the position vector -
of wheel w and the friction force rig":;ci;digy':;:' ofdreiezzzce axes,
vector: 8 P and platiorm.

W w . W\
"1 - (xjfk - xkfj) (3)

vhere x: are the aircraft body axes positional components of wheel w. It
should be noted that i, j, and k must be in cyclic order in equation (3).
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From equation (2),

w . L w
fk = dkn‘i"n H fj djnFn

Substitution of these values in equation (3) yields the following moment
equation:

w
-

W W W .
Mi (xjdkn - xkdjn)Fn (4)

Therefore, the individual components are

My = (d, - xyd, )F.
M: = (x:dxn - desn)F:
H: - (xzdzn - x:dxn)F:
n=1,2,3

When these equations are summed on n, the moment components assume the form

W w W W w v " w W

My = [x,(d,Fy +d,F +d, F) - x(d F +d F +d, F)l (5)
W W W W Wy _ W v W Yy y

M, = [x;(d, \Fl +d F, +d, F) x (@, F +d, F + d,,F)! (6)
W w w w v v W v W

My = [x,(d, F/ +d,,F, +d,,F) -x,(d, F +d, F, +d FOI] (7

Orienctation of Friction Porce Vector

Relative velocities- To determine the orientation of the friction force
vector in the plane of the landing platform, it is necessary to know the
relative velocity of each landing wheel at the instant of touchdown. The
friction force at each wheel will be in a direction opposite to the direction
of the aircraft velocity r-lative to the landing platform at the point of
wheel contact (Ijff, 197!). The point at which vheel w makes contact with
the landing platform has a position vector KY relative to the origin of the
ship's coordinate system. The angle in the plane of the landing platform
between the direction of the XP axis and the velocity vector at wheel w is
denoted by x¥ (see fig. 2). When the magnitude of the wheel velocity rela-
tive to the landing platform is known, the angle x" is obtained as follows.
The velocity of wheel w relative to the landing platform is V¥, where

™« Vi1 + Vi + VK (8)
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Figure 2.- Systems of platform reference axes.

This velocity is obtained by subtracting the velocity of the point ot wheel
contact on the platform from the wheel's velocity relative to the platform:

ow o - =W - "\
v D(Vcg + oxt) - (vlhip + w.hipxk )
In matrix notation these equations assume the form

w dyy d2y

di\ /oY U + Qx3 - RxY
v l=l a1 da2 4y, W |-l v+ Y - exy 9)
vy diy day dyy vy

v+ pxy - ox¥

vhere U,V,W and P,Q,R are the components of the ship's linear and angular
velocity vectors, respectively.

For experiments of this type, the most important components of .hiﬁ
sotion are heaving, pitching, and rolling. Hence, by assuming that

U=VeslRses)

the amount of computation is reduced, and equation (9) assumes the simpler
fora

1 dyy dy; dy, 1 Qxy
Vil d12 dia 452 Jo¥ |- -y (10)
e dis day &35/ Y v+ Y - X}
S
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Morecver,

oY u + qx3 - rx3
N (Vcs +0xt) =] v+ rxi -~ px (11)
vy W+ pxy - qx)

vwhere V., 1is the velocity of the aircraft's center of gravity and T™ is
the po.itfon vector of wheel w relative to the origin of the aircraft body
axes system (Etkin, 1972). Hence, in terms of the velocity components VY and

VY, the angle x¥ is (see fig. 2)

¥ = tan"2(VI/VY) (12)
Equation (10) can be solved for the velocity components VY when the
XY coordinates of the point of whael contact on the platform are known. To

determine these coordinates, it is fivst necese~ry to compute the position
vector RFE where

R°8 « xS81 + xS8) + x$8k (13)

and xi‘ constitutes the locus of points on the trajectory of the aircraft
center of gravity projected onto the plane (X, - C) = 0, which is the plane of
the landing platforw. Hence the distance of any point on the projected tra-
jectory from the origin of the ship's coordinate system is

78 = x$81 + X387 + ck (14)
where C is a negative constant. By substituting x} = xi‘ and xY =0 in

equations (10) and (11), respectively, the velocity components of the air-
craft's center of gravity relative to the landing nlatform are obtained:

1 3
Vi d,, d,, d,, /' Qc
vs 4, 4, d,,/ W W+ px58 - qxi8

Therefore, the velocity components Vf‘ and Vf' are
Vit e (4,0 + 45,v + 4w - QO) (16)

Vil = (d,,u + 4,,v+d,,v+P0) (17)
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The velocities VS8 and VS8 can be integrated io yleld the coordinates X8
and X$8., Therefore, the required coordinates are

c c cg
xS8 = x$8 4+ “‘v1 de (18)
CR . x© cg
X538 = x28 +fv2 dt (19)
where xf% and X§§ are initial coordinates.

The velocity of the aircraft center of gravity normal to the landing
platfora is given by

VS8 e [(d,u+d,,v+d, o - O+ PXSE - x$B)) (20)

Since xfg and ng are known from equations (18) and (19), respectively,
equation (20) can be integrated to yield

c c cg
X38 = x38 + fv, de (21)

where ng 1, the initial distance from the X,X, piane of the ship's coor-
dinate system. The initial values X§§., X$§, and X§§ ~: hip axes
components.

When initjal conditions are given in Earth-‘ixed agsg, a transformation
from these axes to ship axes is required. Given that Xj5 are initial values
in Earth-fixed axes, the corresponding ship axes components are {from
appendix A)

c

X;f 12
cg |. sCc8

xzo (T]!s X1° (22)
c ¢

X3t "

Whe:. equations (18) through (21) are modified in accordance witi, this trens-
formation, the coordinstes of the aircraft trajectory assume the form:

c (J
xx' xxf v
x8 e (1)1 X35 |+ J| V5E P (23)
c:/ s M
x’ 1) e V:
?




Let the origin locatior. »f the landing platform with respect to the ship's
coordinate system be Xt = (Xfo, Xgo, C); then the height of the aircraft cen-
ter of gravity above tle ianding platform is x§, where

P cg
X; = (X,° - 0)

P

Moreover,
P P
. X, = (xig - X30)
\
P P
- Xz - (X§g - xzo)
S Wheel w will make contact with the landing platform *hen (Howard, 1977)
P w w w .
Xy = ~(dx; +d,,x, +d,,x,) (24)

(see fig. 3).

Figure 3.- Aircraft attitude relative to landing platform.
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When this condition is satisfied, the computed values of X{% and X$8
may be used to determine the point of contact of wheel w from

w cg w w w
X, =X +d),x; +d,,x, +dy;x, (25)
w c w w w

X, = ng +d,,x; +d,,x, + dg,x; (26)

The relative velocity components can now be evaluated by substituting from
equations (25) and (26) in equation (10), and the angle k¥ determined from
equation (12).

Kinetic friction force- The friction fo.ce vector F° at wheel -« is
opposite the resultant velocity vector and is equal to the product of the
coefficient of friction and the platform reaction. It is assumed that the
coefficient of friction is a function of the angle 1%, which §s the angle
between the resultant velocity vector at wheel w and the line of intersection
of the rolling plane of the wheel with the landing platform. Denoting the
direction of this line by the unit vector p and the perpendicular direction
by the unit vector n, the velocity components relative to these directions
are (see sketch (a))

Sketch (a)
v‘; = Vg cos(<" - 63) = V} cos 1" (27)
v: - v sin(x¥ - ') - Vl sin ¥ _ (28)
9
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where kY 1is defined by equation (12) and 6? is the aircraft angle of yaw
with respect to platform axes. The velocity components at wheel w relative

to platform axes are VY and Vg and the resultant velocity in the plane of
the platform is V;.

The equation for angle V¥

may be written in the following alternative
forms (see eq. (Al9)):

v .
™ = Jtan™! — - 9,
VV
1
v, - V] tan e‘: Y
Tw = taﬂ_l v > = (K - eg)
vl o+ v‘z’ tan 6, ;

Relative to these directions, the kinetics friction force vector f: assumes
the form

f: = y¥(cos 1¥p + sin Twﬁ)F: (29)

Relative to aircraft body axes, the kinetic friction force and the platform
reaction have components fig’ where

w W W W
flg D11 D12 D13 Fa“ cos T
f‘z'g = o,, b, D, |{F sin " (30)
v W
fsg Dy, D,, Dy, Fy
and
D, Dy, Dy, cos 8, 0

-sin 62

D,, l)z2 Dz, - sin 91 8in 62 cos 01 sin 61 cos 9‘

31 e 33 cos 3, sin 6, -sin 8, cos 6, cos 6,

Kinetic friction moments~ When the components of the force vector from
equation (30) are substituted in equations (5) through (7), and the coeffi-

cients Djj substituted for dj4, the moment components are obtained as
functions of the platform reactions. These are
10

e
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v w w w \
“1 [xz(Daxu cos 1 + D,zu sin v + Daa)
W
- x:(Dzluv cos 1" + Duuw sin v + Dza)]Fg (31)
MY

- W \"J w W w
. [xa(D11“ cos t + Dlzu sint + Dxa)
' \J w
- xY(Dsluw cos T +D,,u sin ™+ D“)]F3 (32)
w w w W w w
- Hs = [xl(D21u cos t + Dzz“ gin t + Das)
w w v W v w :
- x2(Dllu cos T +D,,u sin T + D“)]F3 (33)

Experimental evidence indicates that, in the case of normal impact without
tire bottoming, the assumption of a linear force-deflection relatiomship for
the tire is adequate for practical purposes (Milwitzky and Cook, 1953). Henge.
by assuming that each tire is a linear spring with an effective stiffness K.,
the force resulting from a deflection &Y can be expressed in the simple form

\ ] W W
F; = -K{6 (34)

Moreover, in the event that tire bottoming occurs, a linear segment
approximation which takes into account the increased stiffness of the tire
that results from bottoming yields good results.

Subsequent to tire and shock-strut deflection, the moment arms become
functions of the tire and shock-strut deflections; that is

w w v W W W w
x, = (x1° - 28 )+ (LR - D,,$ )

. x: = (x:° -m's") + (m"R¥ - D236“) (35)

X = (x‘:° - n"s") + (a"R" - D,,Gw)

=

. where xgo are the coordinates of t&e agle at wheel w wvhen the shock strut
is in the fully extended position; % , m, and n" are direction cosines; 8"
is the shock-strut deflection, and R¥ 1s the radius of wheel w (see fig. 4).
Hence, in terms of these moment arms and tire forces, the moment equations ~re

R c A T R

) QAE'./Q
[ VSN

’1 HY - [x:(Dz‘u" cos 1" + Dzzuw sin ¥ + D,,)

&

ai - i:(n,xu' cos 1" + D,,u' sin ¥ + D,‘)]K:G' (36)
I 1
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x__ = COORDINATES OF AXLE AT WHEEL w
10 WHEN SHOCK STRUT IS IN FULLY
EXTENDED POSITION

RW = RADIUS OF WHEEL w

Figure 4.- Orientation of landii.g4 gear relative to aircraft body axes.

W

w w w
M, = [x1(Ds1“ cos T

; W w
+D,,u sin v +D,,)
- x5(0,,1% cos 1¥ + D ,u¥ sin ¥ + D, ) IKEEY . @3N
M) = [x‘:(Dnuw cos 1" + D,,u” sin 1" + D;j)
v v w W w W W
- xx(Dn" cos T + D, sin 1 +D,.)]K.S (38)

The forces relative to aircraft body axes are

v w w

flg 1 Dy, Dy Wocos 1

W W W W w

f28 = -Ke§I D,y D, D,, u s8in 7 . (39)
w

fsg Dy; Dy, D, 1

12
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It should be noticed that, when the aircraft rebounds, 6¥ = 0 and the
friction forces and moments vanish.

Static friction forces- Subsequent to wheel contact, wheel w is exposed
to a static friction force. If this force is not sufficient tc prevent slid-
ing, a kinetic friction force will be generated. The kinetic friction force
will persist until the velocity of wheel w in the plane of the landing plat-
form is dissipated, at which point a static friction force is again encoun~
tered. During static friction conditions, the velocity of the point of wheel
contact .n the plane of the landing platform i1s zero. In this case, the wheel
axle will move relative to the point of wheel contact by stretching the tire

spring and the aircraft will oscillate under the restoring influence of the
tire springs.

If torsional stiffness 18 neglected, each tire may be treated as a three-
spring system: a lateral spring that acts to restore deformations of the tire
normal to the plane of the wheel, a spring that resists displacements in the
direction of the strut axis, and a spring normal to these two directions.

That is, if n 1s a unit vector normal to the plane of the wheel and s a

unit vector coaxial with the shock strut, then the tire resists wotions in the
directions of n, 8, and i x 8.

In order to determine the spring forces, it is necessary to know the
velocity components of the wheel axle in the directions of 0, §, and A X 8,

n=Ll+M +M

s = 2{ +mj + nk (39a)

nxs=s(oM-mN)i+ (AN -nL)j + (mL - M)k

and the direction cosines lw.m",n",L".nv,N" must be ascertained from the
geometry of a particular aircraft. The tire displacements are Gn normal to

the plane of the wheel, 63 in the direction of the strut axis, and 65 normal
to these two directions. Before touch-down, the displacement of the wheel axle

relative to the point of wheel contact is zero. After touch-down, the velocity
components of the wheel axle are

W, W W, W w, v W, W . ) \ w _ v
30 nM -mN N -nlL mL -2 a + qx,a rxza
oW w W w v o
n L MY N v. + rxl. px’.
A J w \ \'J W w
) ] m n _ \ + px qax,,
W h
d;, dy, dyy QX,
- dgy 43, 4y, -ng
4 4 d/ W+ Y- ox¥
3 52  Y) N
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and

\ W.W W W.W U
u = (u-228) : v = (v-m8) H W (w-ng)
a a a
w w ww w ' VIR w w w W
- Y . - . -
Xia ™ (x10 28) ; X ™ (x20 ms ) ; X4y = (x30 ns)

The xYo are the coordinates of the axle when the shock strut is in the fully
exterded position and s¥ is the shock-strut deflection at wheel w.

The forces generated by the tire displacements are

£V Y 0 o 3
p P P
Y l«-l0o W o 3
n n n
£v o o k/\&
Vv, v v

where

w W, W oW W W W W W W W W
k kn(p »87) 3 k, kv(p »87) kp kp(p »8)

and pw and 6" are the pressure and tire deflection, respectively, at
wheel w.

If after touch-down wheel w has a velocity component VY 1in the direc-
tion of unit vector p, then a kinetic friction force will be generated. The
magnitude of the force will be

w
F; = u"FY cos 1 ; uw = uv(r )

Likewise, a velocity component V: perpendicular to V; will be accom-
panied by a kinetic friction force FY, where

F: = Fy sin ¥ ;W% = (1Y)

Generally, these two components will exist simultaneously and give rise
to the resultant kinetic friction force:

w oW
Ff -y l"3

The tire force components (F:T) relative to the landing platform are obtained
by trunsforming the tire forces from strut axes to platform axes. These are:
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A static friction force will persist until the friction force exceeds the
spring force, that is, until

(F)? > [(F]? + (Fyp)?)

When this condition is satisfied, the tire starts to slide and kinetic friction

forces begin to operate. Relative to aircraft axis, the tire force components
are

£ Y Y "M - "N\ ANV

1T nn

w W W W, W W, W W, W
f a7 1= M m LN -nL kv5v 4
w W W W, W w W W.W
f3T N n mL LM kpap/}

When the aircraft touches down, that is, when the wheel contact condition
(eq. (24)) is satisfied, the tire deflection rates are calculated and inte-
grated and the corresponding spring forces determined. These are then .com-
pared with the forces required to produce sliding. When the kinetic friction

forces exceed the spring forces, aliding ensues and the forces are modified
accordingly.

Effective tire stiffness- The effective tire stiffness at any orientation
is a function of the component stiffnesses of the tire, the direction cosines
defining the orientation of the shock strut and wheel relative to aircraft
body axes, and the spatial orientation of the aircraft relative to the landing
platform. The tire force produced by a tire deflection ¢ normal to the land-
ing platform is K GK, where K, is the effective tire stiffness and R 1s a

unit vector nornal to the landing platform. The corresponding tire :.,rces in
the directions of n, #, and i x 8 are, respectively:

(LD,, +MD,, + MD,,)¢"KY (p¥,8")
(1D, + W, + 0D, )X} (p"¥,8")

[(aM - aN)D,, + (AN - nL)D,, + (aL - BOD,,18"K)(p¥s")
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Therefore,

K = {(LD,, + MD,; + NDy)?KZ + (D, + mD,, + nl,,)K2

+ [(nM - mN)D,, + (AN - nl)D,, + (ul - ©M)D,,])?K}} yH/

KINEMATICS AND DYNAMICS OF LANDING GEAR

Landing Gear Forces

Resultant force~ The fricticn force and the platform reaction force are
reacted at the wheel axle by a resultant force, which can be resolved intov a

component coaxial with the shock strut and a component normal to the shock
strut.

Axle force- The force f: acting at the wheel axle and the force Fo
acting at the point of wheel contact with the landing platform combine with
the gravity force M g to impart an acceleration to the wheel, that is,

=W, =W w- wiw
l-‘a + Fg +Mg=MT

where g 1is the gravity acceleration vector and T 1s the acceleration of
wheel w (Milwitzky and Cook, 1953). Therefore,
=M@ -9 - (40)

The resultant force acting at the axle of wheel w has components f:a
relative to aircraft body axes. The force components normal to the shock
strut may be expressed in terms of these components as follows.

The scalar magnitude of the body axes components fia normal to the
shock strut are

f:; sin(cos™! 2¥) ; f:a sin(cos=! m") ; f:a sin(cos~! n") (41)

In terms of the aircraft body axes components fia' the normal force FN
has vector components as follows (Wills, 1958)

f?;. =@ x 1) x s+ £, ) xa+ e (axk) xi (42)

Using vector identities, this equation can be rewritten as follows:

B = (Y 10 - (1-8)8) + 5,05 - (5+ 6)8) + £}, [k - (k- )S]) (43)
. .

By substitution for § from equation (39a), equation (43) assumes the follow-
ing form:

16
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BN, = (10 - e, - amel, - e[ 11 + [-mef], + (1 - m)£Y, - mel, 1]

+ ['“2f¥a - nmfga + (1 - nn)f:.]i} (44)
Shock strut and platform forces- In addition to the force f:a normal to

the shock strut and the axial strut force f: applied at the axle, the wheel
is subjected to the platform reaction and friction force f‘; This force is

applied at the point of wheel contact and has components fYa relative to
aircraft body axes. The resultant of these forces is

W =W =W W
F (FNa + Fs + Fg)

w w w w W oy w w
= ([ - w)fY, - tmf], - tnfl, + 0Fg + €1 + [-maeY, + (1 - m)f},
w w w g4 w w w w W
- mnf,, + ofg + f28]j + [-nlf1a - nof,g + (1 - nn)f,, + nF_ + fglk}

-ME -3 (45)

This equation may be written more concisely as

!'V
(F") = (W) + Fg| a” )+ [¥G) = W7 ([5"] - gD (46)
nU
where
H
(F) =| £
f
1-29Y Y Y
(LY] = --"tY 1-a"a"  -a'n¥
a"Y "% 1 -a"n"
\
E
17
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[Fal =| £

(F9] = | £

From equation (40),

[Fg) = -[Fg] + M (IX"] - [g])

47)
Substituting from equation (39) yields
(Fal = KZ6“(DI(FY) + M (IX") - (g]) (48)

(D} = D,, D,, Dy,
Dy, D3, Dy,
Y cos v
[le - u" sin 1V
1

Substituting from equations (48) and (39) in equation (46) gives the equation
of motion of the wheel mass

"U

[LYHKZ6VIDIFE) + WY (IKY) - [g1)} + Fg| w* | - KZ8¥ID]IFY) = W (IXY) - [g])

(49)

Equation (49) gives the forces acting at vheel v and establishes a relation-
ship between the forces due to tire deflection and the shock-strut forces.

18
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The corresponding force acting on the aircraft is [FX]. where

"V
[Fy) = - MKV IDIUFG) + WY ((R¥: - (gD} - #¥| o (50)
nv
and
f
(F) = | £;
£y

A

that is, the axial strut force F: due to hydraulic resistance, air compres-
sion, and internal bearing friction combines with Pﬁa and the prevailing

aerodynamic, thrust, inertia, and gravity forces to modify the aircraft motion
subsequent to wheel contact.

Influence of wheel mass- The fact that the mass of the wheel is a rela-
tively small fraction of the total mass of the aircraft suggests that the
wheel mass can be neglected without impairing the validity of the calculated
results (Milwitzky and Cook, 1953). With this modification, the equations
relating the tire forces to “he strut forces assume the simpler form:

l.'
Kes' (L)1 (Fgl + gl & | = K¥e¥iD)(FY) (s1)

By combining like terms, this equation can be rearranged as
A\

Kes“([1) - LD p)(ry) = rof &

et bttt e e v e W e

v
vhere
1 0 O
(I1)=J0 1 O
0 0 1
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Matrix multiplication yiclds

1@, 19, 19,\ A" cos < L
K‘c’6w nf, nof, nd, W osin ¥ e P: m
nd, ¥, od, 1 n
whece
@, = 1D,, +mD,, +nD,,
@, =, +ed,, +nd,,
@, = 10,, +w,, +nd,,
Therefore,

1:6'(911;.' cos t¥ + Quu"' sin ¥ + Qu) - F‘: = ?:(s.é)

(52)
For zero wheel mass, the landing gear forces acting on the aircraft are
A
e (LY D) (Fg) + ¥y » | u¥ (53)
oV
Equation (51) permits this equation to be written in the simpler form:
W Wer oy -
X" (01175) = () (54)

Shock~strut closure and tire deflection rates~ Subsequent to the time when
v
x; = =(dyyxg + dyyxyg + dyyxy0)

platfora reaction forces, friction forces, and shock-strut forces are gener-
sted in accordance with the equations formulated. Bquation (52) gives the




relationship between the tire deflection forces and the rhock~-strut forces.
The rate of tire deflection is &Y, where

8 = d),(ug + axy, - x]p) + d,,(vp + Xy - px},)

+ d”(w: + px:‘ - qx‘:a) -+ PX‘; . QXY) (55)
where
u: = (v - Ya") ; V: = (v -u's") ; V: = (w - n'a")
and
x"'(x‘;'° - YY) x‘:‘ - (x‘;° - o'} ; x‘:. hi (x":o - n"s")

Equations (52) and (55) can be solved to cbtain *¥ and 8¥, which can then
be used to cumpute the platform reactions and friction forc 1 and the forces
generated in the shock strut. When these forcesr are added to the aerodynamic,
inertia, thrust, and gravity forces, the response of the aircraft subsequent to
wheel contact can be determined.

CONCLUSIONS

The equations describing the friction forces generatazd during landing
operations on ships at sea have been formvlated. To simplify the formulation,
it has been assumed that the force-~deflection characteristics of the tire are
linear, and that the behavior of the shock strut is relatively insensitive to
variaticns in the air compression process. By ignoring variations in the
polytropic exponent and by including only those characteristics of the tire
and shock strut that contribute significancly tc the generation of landing
p3ar forces, a set of relatively simple equations is obtained. Nevertheles,
these equations are considered adequate for practical purposes.
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APPENDIX A
TRANSFORMATIONS

Transformation of Motion Vector Components
A set of vector components in a coordinate system that is rotationally
fixed is related to the components in the aircraft body axes by a transforma-
tion equation of the form

(4] = [T]g, [E] @1

where
[A] column vector of motion components in aircraft reference system

[T]EA matrix that effects a transformation from fixed axes to aircraft body
axes

[(E] column vector of motion components in fixed reference system
Likewise, the components of a vector in the fixed reference system are
related to the components in the moving ship reference system by a transforma-

tion of the same form. That is,

(S) = [T)gglE] (a2)

where
[S] column vector of motion vector components relative to ship axes

[’I‘]Es matrix that effects a transformation from fixed axes to moving ship
axes

Similarly, a triad of ship axes components can be transformed to aircraft
body axes by the transformation equation

[A] = [T)g,Is] (A3)

where

[T}sA matrix that effects a transformation from ship axes to aircraft body
axes

Substituting from equation (A2) in equation (A3) gives a transformation

from fixed axes to ship axes, followed by a transformation from ship uxes to
aircraft axes:

22
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[A] = [T]g, [T} [E] (A4)

Finally, substituting from equation (Al) in equation (A4) yields the following
matrix equation:

[A] = [TIg,[T],g[TIg, A

Tucrefore, [Tlgy[Tlg [T]Ei = [I], where [I] is the unit matrix. Solving this
! matrix equation for ?T]SA yields

E -1
} [Tlgy = [Tlg,(T)5g (a3)

Since only orthogonal transformations are being considered, the inverse of a
transformation matrix equals the transpose of the matrix and equation (A5)
simplifies accordingly. That is,

T

-1
[Tlgg = [Tlgg (46)
where superscript T denotes transposition.
Substituting from equation (A6) in equation (A5) vields the required
transformation from ship axes to aircraft body axes. That is,
T
[Tlg, = (Tlg, [Tl a7)
In terms of the Euler angles vy, 6, and ¢ and with the conventional
aeronautical rotation sequence, the required transformation matrices are
(McRuer et al., 1973)
1 0 0 cos 8 0 ~sin 9 cogs y siny O
[’r]m = 0 cos ¢ ain ¢ 0 1 V] -sfn ¢y cos yp O
- 0 =-sin ¢ cos ¢ sin 6 0 cos 6 0 0 1
‘? f % i cos 6 cos Y cos 6 sin ¢ -gin @
o [’l‘]EA = |sin ¢ sin O cos ¥ sin ¢y 8in O sin ¢ s8in ¢ cos 6 (A8)
- sin ¥y cos ¢ + cos ¢ cos ¢
. cos ycos ¢ 8in 6 sin y com ¢ 8in 6 cos ¢ cos ©
|, + sin ¢ sin ¢ ~ cos V sin ¢

For the transformation from fixed axes to ship axes, the Euler angles
vill be denoted by the capital Greek letters Y, o, and ¢. In terms of this
notation, the transformation matrix [T]gg assumes a form identical to equa-
tion (A8)
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cos © cos ¥

sin ¢ sin © cos ¥
- 8in Y cos ¢

[T]ES

cos Y cos ¢ sin O
L + sin ¢ sin ¢

The following equation gives the

205 © cos ¥ sin ¢

sin ¥
+ co

cos O sin ¥

(T]

e

ES

- 8in © sin

-

A computer program, which solves
of the aircraft, evaluates angles ,
tude of the aircraft as a function of

- 8in Y cos ¢

cos O gin ¥ -sin O

sin ¥ sin © sin ¢
+ cos Y cos ¢

sin & cos O
(A9)

sin ¥ cos ¢ sin © cos & cos O

- cos ¥ sin ©
transposed form of this matrix:

cos ¥ cos ¢ sin Oq
+ sin ¥ sin ¢

sin © cos ¥

sin ¥ cos ¢ sin © (A10)

- cos ¥ sin ¢

sin O sin ¢
8 Y cos ¢

d cos O cos ¢ cos ©

the equations of the mathematical model
6, and ¢ and hence determines the atti-
time. The Euler angles are then used to

compute the elements of the transformation matrix [T]ga.

To determine the attitude of the ship, the components of the ship's
angular velocity vector are measured and used to formulate the equations
(McRuer et al., 1973)

#

P 5 - @ sin ©

O cos & + ¥ cos © sin ¢ (All)

Q

R=V cos O cos & - O sin ¢
Solving these equations for 6, é, and %, we obtain
d =P + (Q sin & + R cos ®)tan O

O =Qcos ¢ - R sin ¢ (A12)

&

il .o

¥ = (Q sin & + R cos ¢)sec O

{Z:
*
; The solution of these equations yields the required Euler angles ¢, 6,
B and ¥, which are then used to determine the elements of the transformation
L A matrix [T]gg. After theTformulation and transposition of this matrix, the
. roduct of [T and [T is formed.
b P [Tlgs and [T1Eg

E The transformation of vector compo.ents from ship axes to aircraft body
i axes is given by equation (A7):

3 [Tlg, = [Tlg, [T1X

oS A SA EA"TES
7
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ship axes, this matrix equation assumes the form

11

12

13

21

22

23

The direction cosines dij have the following values:

= [(cos ¢ cos ¢ sin 8 + sin y sin ¢)(cos © cos ¥)

In terms of the direction cosines djj, relating aircraft boedy axes to

(Tlg, =

d .d..d )

11712713

d21d22d28

d,.d,.d

31%32%0
.

(cos 6 cos y cos 6 cos § + cos 0 8in Y cos O sin ¥ + sin 6 sin 0O)

{cos @ cos Y(sin ¢ sin © cos ¥ ~ sin ¥ cos ¢)

+ cos 6 sin y(sin ¥ sin © s8in ¢ + cos ¥ cos &) - 8in 6 sin ¢ cos 0]

[cos 8 cos Y(cos ¥ cos ¢ sin © + sin ¥ sin O)

+ cos 0 sin Y(sin ¥ cos ¢ sin © - cos ¥ sin ¢) - sin 0 cos ¢ cos O]

{(sin ¢ sin 0 cos § - sin ¢ cos ¢)cos O cos ¥

+ (8in y 8in 0 sin ¢ + cos ¥ cos ¢)cos © sin ¥ - sin ¢ cos 6 sin O]

{(sin ¢ sin 6 cos § - sin y cos ¢)(sin & 8in 6 cos ¥ - sin ¥ cos ¢)

+ (sin ¢ sin 0 sin ¢ + cos ¢ cos ¢)(sin ¥ sin © sin & + cos Y cos @)

+ 8in ¢ cos 6 sin ¢ cos 0]

{(sin ¢ sin 6 cos y - sin ¥ cos ¢)(coa ¥ cos ¢ sin © + sin ¥ sin )

+ (s8in ¢y 8in 6 8in ¢ + cos Y cos ¢)(sin ¥ cos & sin O - cos ¥ sin @)

+ sin ¢ cos 6 cos ¢ cos 6]

+ (sin y cos ¢ 8in 6 - cos ¢ sin ¢)cos © sin ¥ -~ cos ¢ cos O sin O]

[(cos ¥ cos ¢ sin 6 + sin ¥ sin ¢)(sin ¢ sin © cos ¥ - sin ¥ cos Q)

+ (sin y cos ¢ sin 6 -~ cos ¥ sin ¢)(sin ¥ sin © sin ¢ + cos Y cos ¢)

+ cos ¢ cos 6 sin ¢ cos O]
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dyy = [(cos ¥ cos ¢ sin 6 + sin ¢ sin ,)(cos ¥ cos @ sin O + sin V¥ sin %)

+ (8in Y cos ¢ 8in 6 - cos ¢ sin ¢)(sin ¥ cos ¢ sin © - cos ¥ sin %)

+ cos ¢ cos 6 cos & cos O]

Although the direction cosines are useful for transformation purposes,
they are not convenient measures of aircraft attitude. A conversion from

direction cosines to a set of Euler angles that represents the attitude of the

aircraft relative to the ship can be effected by the method described by
Meyer et al. (1967).

For the conventional aeronautical rotation sequence, a rotation matr?:
can be generated as the prcduct of three rotation matrices as follows:

[p] = [T,(8,)1(T,(8,)1(T,(6,)] (A13)

where

1 0 0

(T,(8,)] ={ 0O cos 6, sin 6,

0 -sin 6, cos 91

cos 6, 0 -sin 02
[Tz(ez)] = 0 1 (4]

sin 8, 0 cos 62

cos 6, sin 8, O
(T,(64)] = | -s8in 6, cos 6, O
0 0 1
The product matrix, equation (Al3), yields the following direction cosine:
dy, = cos 6, cos 6,
d,, = cos 6, sin 0,
d,y = -8in 6, ‘

d,, = 8in 6, sin 8, cos 6, - sin 6, cos 6,

d;; = 8in 6, sin 6, sin 8, + cos 6, cos 6,
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d;; = sin 6, cos 8,

dy, = cos 93 cos 6, sin 8, + sin 64 8in 6,

d32 = 8in 6, cos 6, sin 6,

daa = cos 6, cos 62

- cos 63 sin 8,

The following combinations of these equations are required to convert the

direction cosines dij to the Euler angles 6,
d,, sin 6, - d;, cos 6, =

d;, sin 6, - d,, cos 9y =

d,, sin 6, - d,, cos 6, =

dyg =

d;; sin 6, + dy, cos 6, =

From equation (Al4),

¢ 0 d12
an O, = -d—
1

Equations (Al5) and (Al6) give

» 8,, and 0,4:
0

sin 0,

-cos 8,

-sin 6,

cos 62

tan 6, =

22

or

d cos 6, =~ d21 sin 63]

d,1 tan e, - d32
tan 6, =
1 d,, - d,, tan §,

From equations (Al7) and (Al8)

dxn
tan 62 =

]

-lﬁz, sin 0, + d,

s cos 61]

(Al4)
(A15)
(A16)
(A17)

(A18)

(A19)

Given the nine direction cosines and the rotational sequence, the three Euler

angles 6,, 6,, and 8, can be computed. For the present application, 8,

corresponds to the aircraft yaw angle relative to the landing platform.
Angles 6, and 6, are pitch and roll angles, respectively, relative to the

landing platform. It should be noted that the computed values of 6; are not
unique since tan 6 is a many valued functiom, that is,
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tan O = tan(nn + 9)

where n 1s a positive or negative integer.

considered and for the angles anticipated, oaly these solutions corresponding

to n=0 will be required.

g
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APPENDIX B
INTERNAL SHOCK-STRUT FORCES

Hydraulic Forces

The hydraulic force Fy, 1s obtained by making use of the equation for
the discharge through an orifice (Milwitzky and Cook, 1953)

Q= cA Y2 oy, - By e

Q volumetric rate of discharge

d coefficient of discharge

A, net orifice area

Py hydraulic pressure in lower chamber
air pressure in upper chamber

p mass density of hydraulic fluid

Using continuity consideiations, the volumetric rate of discharge can be
expressed in the alternative form:

Q- AhS (B2)

where Ap 1is the hydraulic area and § 1is the telescoping velocity of the
shock strut. Equating these two expressions for the volumetric rate of dis-
charge yields the pressure differential
pAr§?
2
Z(CdAh)

The hydraulic resistance Fp due to the telescoping of rhe strut is given by
the product

ph Pa

(B3)

P 3

(P‘l - p.)Ah - -——-—TAh él - "l (B4)

2(CgA,)

This equation can be uced for both the compression and elongation strokes by
introducing the factor §/|8| to indicate the sign of the hydraulic force ss
follows:
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PAh .

§? (B5)
|2(CA)

|m.

e

Pneumatic Forces
The pneumatic force Fy, in the upper chamber depends on the inflation
. pressure and the exposed area. It is assumed that the air pressure obeys the
i generalized gas law (Milwitzky and Cook, 1953)

n n
pv = constant = p_v_

v \D
p = po(:f) (B6)

p air pressure in upper chamber of shock strut

or

where

Po alr pressure in upper chamber for fully extended strut

v air volume of shock strut

Vo air volume for fully extended strut

The instantaneous volume v 1is equal to the initial volume minus the swept
volume, where the swept volume is the product of the pneumatic area A, and

the stroke of the strut S, that is,

ve (v, - AaS)

Substituting this value in equation (B6) gives

vo
= vfi=em) o

It follows that the pneumatic force is

Vo n
= PAy = P, a(v A,s) . (38

The exponent n depends on the rate of compression and rate of heat transfer
from the air to the surrounding environment. Low rates of compression corre-
spond approximately to the isothermal case and a value of n = 1. Higher

rates of compression approach the adiabatic condition and a limiting value of

30
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n=1.4, A limited amount of experimental data obtained in drop tests indi-
cates that, in most practical cases, a value of n = 1.1 may be used
(Milwitzky and Cook, 1953).

Internal Friction Forces

According to the law of friction, the cqefficient of friction u is
defined as the ratio of the friction force to the normal force. This coeffi-
cient is somewhat greater under conditions of rest (static friction) than under
conditions of sliding (kinetic friction). Machine designers usually classify
frictional resistance as friction between dry surface, friction between imper-
fectly lubricated surfaces, and friction Letween perfectly lubricated surfaces.
The internal friction in landing gear shock struts usually involves relatively
high normal pressures and small sliding velocities. Moreover, the usual types
of hydrrulic fluid used in shock struts have imperfect lubricating properties.
Therefore, for the sake of completeness, it will be assumed that the intermal
friction between the bearings and cylinder walls approaches the dry friction
condition. Hence, the internal friction forces which depend on the magnitude
of the bearing forces, the orientation of the gear, the spacing of the bear-
ings, and the appropriate coefficients of friction are obtained as follows
(fig. 5).

Figure 5.~ Shock-strut dimensions.
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The bearing forces are related to the force F§a normal to the axis of

the shock strut. This force is required to determine the internal friction
forces f§, where

£ - T%T GWYIE] + W8 IE D (89)
where

f¥ axial friction force for strut at wheel w
u, coefficient of friction for upper bearing (attached to inner cylinder)

FY normal force on upper bearing (attached to inner cylinder)

ug coefficient of frictinn for lower bearing (attached to outer cylirder)
Fg normal force on lower bearing (attached to outer cylinder)
-%T sign of friction force
| (Y - s)
W w
F, = fN —
a (2] +5)
w w w w 2: - S
F, = (f, +F)=f +1
2 Na ! Nn LY + S
. (¥ - 8)
W s \ J 2 W W \J
£, = 7 |F — (uy, *u,) +u (B10)
£ 8] |'Na (¥ + 5) 1 2 2

(see fig. 5).

Total Strut Force

The sum of the pneumatic, hydraulic, and interrnal friction forces gives
the total shock-strut ‘orce, which is

s PAY v n 1) -8
S &2 o ] w 2 v w U
* |lsl Z(CdAn)z ° “("o - *as) Is| IMMal\ ¥ +s) ?

(811)
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